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Computer Analysis of Feynman Diagrams for a Static Model* 

A computer program, written in FORTRAN, which constructs and computes Feynman 
diagrams for the charged scalar static model is described. 

Computations in field theory are complicated by the large number and com- 
plexity of Feynman diagrams necessary to describe the higher orders of perturba- 
tion theory. Campbell and Hearn have described a very sophisticated system of 
computer programs designed to handle this problem for any interaction [l]. The 
purpose of this letter is to describe a program which performs the more limited 
task of constructing and computing the bare perturbation series diagrams for the 
charged-scalar meson field interacting with a static nucleon source [2]. This is not a 
trivial problem, since, for example, even the two-point (propagator) function has 
71 graphs in fifth order and 461 in sixth order. Power series expansions computed 
with this program may be used, for example, to study the application of PadC 
approximants to the charged scalar static model [3]. The program is written in 
FORTRAN and may be conveniently subdivided into two sections, one which 
constructs the diagrams and sets up the integrals for the matrix elements and one 
which numerically evaluates these integrals. 

The details of the noncovariant perturbation theory for this static model are 
presented in Ref. [4]. The case of 7r+p scattering is considered here, although the 
program is easily generalized to other situations. For a given order in X = g02, the 
quantities which characterize a given diagram in the perturbation theory are the 
propagation denominators arising in each slot between vertices. 

In particular, the contribution of a given diagram depends upon which mesons 
are present in each slot. For example, the graph in Fig. l(a) is characterized by a 
denominator composed of the factors 

D,,=(V-cow, - q)( v - q)( v - WI - wz)( v - wz)( v - wg - c&J, 

where V = E - m, (WI, is the bare mass) and the various w’s are the energies for 
each meson w = .\/k2 + p2. This graph is the only graph in which the w’s appear 
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FIG. 1. Two third-order (in X = go’) Feynman graphs for the r+p scattering amplitude in 
the charged scalar static model are shown. These graphs are two different branches of the same 
IV = 3 class and sequence. 

in this particular order. The set of all allowed combinations of the w’s is in one-to- 
one correspondence with the graphs in that order of perturbation theory. 

Given N, the desired order of perturbation theory, construction of the Feynman 
diagrams and the corresponding integrals is accomplished by three levels of parti- 
tioning of diagrams according to various structural features of the graphs. The 
first partition sorts diagrams according to the particular attachment of the external 
meson lines in the graph. Two of the 2N vertices in the N-th order (in h) correspond 
to emission and adsorption of external mesons. There are, therefore, N2 possible 
arrangements of these external lines; each such arrangement is called a class. A 
class is numerically represented by an array of 2N - 1 integers denoting the 
number of external mesons present in each slot. For the graphs in Fig. 1, for 
example, the class would be represented by the vector (1, 0, 0, 0,l). This array 
serves as input to the subsequent sections of the program and is also used to 
correctly insert external meson energies in the final calculation. 

Each class is next partitioned into sequences. A sequence is characterized by two 
arrays of 2N-1 integers corresponding to the number of internal (virtual) mesons 
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of a particular charge present in each slot. For example, the sequence for the 
positive mesons for both graphs in Fig. 1 would be (1, 1,2, 1, l), while that for the 
negative mesons would be (0, 0, 0, 0,O). The sequences are constructed by allowing 
all possible emissions and absorptions of internal mesons subject to the following 
constraints: 

(a) charge is conserved; (b) no internal mesons are present prior to the first or 
subsequent to the final vertex interaction; (c) improper graphs (having a bare 
internal nucleon) are forbidden; (d) external emissions and absorptions take 
precedence over internal meson events. 

The two arrays of integers computed here are the input for the next section. 
The final partititon involves diagrams having the same class and sequence 

structure. Whenever a meson is absorbed and more than one appropriately charged 
meson is present in the preceding slot, an independent diagram is created for each 
possible absorption. Both graphs in Fig. 1 have the same class-sequence structure 
but differ in which meson is absorbed between the third and fourth slots. Since 
each emitted meson represents a unique integration variable, care must be taken 
to distinguish between mesons used at various places in the diagram. Logical 
arrays are used to store the past histories of the virtual mesons and to determine 
what mesons are available for absorption at any given vertex. These logical arrays 
are then used to create two arrays of integers (one for each charge), which are used 
in the actual diagram calculation; these integers are equal to 1 if a particular meson 
is present in a particular slot of the branch or diagram being considered and are 0 
otherwise. If we denote the array of integers for positive mesons by Q (meson 
number, slot), the values of Q for the diagram in Fig. l(a) are given by: Q( 1, 1) = 1, 
Q<l, 2) = 1, Q(l,3) = 1, Q(l,4) = 0, QU, 5) = 0, Q(2, 1) = 0, Q(2,2) = 0, 
Q(2,3) = 1, Q(2,4) = 1, Q(2,5) = 1. This array plus the class vector given above 
are used to set up the denominator D, . The contribution of this diagram is then 
given by 

where u is the phase space-cutoff function. 
When the integration dimensionality (N - 1) becomes greater than 4, it is more 

economical to use Monte Carlo method than simple quadratures for evaluation of 
the noncovariant Feynman integrals. The integration region [l, co] is mapped 
onto [0, l] by a linear fractional transformation with one free parameter. This 
parameter is adjusted to give maximum accuracy. Several methods of importance 
sampling were attempted but did not improve the results. Experience indicates 
that 5000 sets of random values for the transformed internal meson energies are 
sufficient to obtain results accurate to within 1%. 
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While this particular program is limited compared to the system in Ref. [l], the 
direct analysis of the graph structure used here could be useful when applied to 
other field theories. Additional information and listings are available from the 
authors. 
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